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Both the Klein-Gordon equation and the Dirac equation are dealt with in the 
generalized Rindler space-time of a nonuniformly accelerating observer. Making 
use of a new method and introducing a tortoise-type coordinate transformation, 
it is proved that there exist an event horizon and thermal radiation depending on 
time in the space-time. The Hawking-Unruh temperature is proportional to the 
variable acceleration. 

A uniformly accelerating Rindler observer along a straight line in Min- 
kowski space-time receives thermal radiation whose temperature is propor- 
tional to the accelerating g al though another observer at rest in Minkowski 
space-time receives nothing, thinking of  himself  as being in the vacuum 
(Unruh, 1976). We are interested in what is received by a nonuniformly 
accelerating observer with a variable acceleration g(t)  in the Minkowski  
vacuum. 

1. I N T R O D U C T I O N  

When the acceleration g is constant, the line element in the local Rindler 
space-time is given as (Misner et al., 1973) 

ds 2 = - ( 1  + gx) 2 dt  2 + dJf 2 + dy 2 + dz  2 (1) 

where g is the coordinate acceleration. The coordinate temperature of  thermal 
radiation relative to the Rindler  observer is 

T = g/2"rrKB (2) 
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which is also the proper temperature relative to the observer resting at the 
origin of the Rindler coordinate system because g is his proper acceleration. 
Here KB is Boltzmann's constant. It has been proved that the metric (1) is 
still a vacuum solution of the Einstein equation when g depends on the time 
t (Tang, 1989) 

ds 2 = - [ 1  + g(t)x] 2 dl 2 + dx z + @2 + dz 2 (3 )  

Recently we have developed the method suggested by Damour and 
Ruffini (1976) for dealing with the Hawking radiation of black holes (Zhao 
and Dai, 1991, 1992). With this approach it is easy to obtain the temperature 
of a black hole whose mass depends on time. In this paper, we will investigate, 
making use of the new method, what will be observed by a generalized 
Rindler observer whose acceleration g(t) is dependent on time. In Section 2, 
we show the location of the event horizon in the generalized Rindler space- 
time (3). In Section 3, we deal with the Klein-Gordon equation and give 
the temperature and the spectrum of radiation of Klein-Gordon particles by 
means of a generalized tortoise transformation. Then we calculate the Dirac 
equation in Section 4. Section 5 is devoted to a discussion. 

2. EVENT H O R I Z O N  

In the space-time (3), the null hypersurface equation 

Of O f _  0 
g~V Ox ~ Ox v 

can be reduced to 

Because 

we have 

o r  

2 2 

(4) 

(5) 

1 
x = - -  (1 7- ~t) ( 8 )  

g 

This is the equation that the null hypersurface in the space-time (3) should 
satisfy. It is also the necessary condition for an event horizon in the space-time. 

]7 2 = (1 "q'- gx) 2 (7) 

Jc - Ot \Ox] \OtJ (6) 
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3. KLEIN-GORDON EQUATION 

In the space-time (3), the Klein-Gordon equation 

1 O ( o x ' O ~ )  ( ~--g  g ~ - ; , ,  + tx~dP = 0 

can be written as 

02R 

(9) 

_ _ _  OR gx OR + (1 + gx) 20zR + g(1 + g x ) - -  (10) 
Ot 2 + 1 + gx  Ot Ox ---~ Ox 

- (1 + gx)2(X 2 + Fx~)R = 0 

028 -Jr- 02S -1- )k2S 0 (11) 
Oy 2 OZ 2 

after the separation of  variables q~ = R(t, x)S(y,  z). Here, Ix0 is the mass of  
a K le in -Gordon  particle, h is a constant. Introducing the generalized tortoise 
transformation (Zhao and Dai, 1991, 1992) 

1 
x.  = x + ~ ln[x - xH(t)] (12) 

w = t - to (13) 

We can write equation (10) as 

(1 + gx)2[2K(x - xtt) + 112 - Jc~ O2R 

2K(x - xH)XH Oxz* 

02R 2K(x - xtf) 02R 
+ 2 - -  

Ov.Ox, 2H Ov z* 
_ _  + 2v, xg(x - xn) OR 

-#H(1 + gx) Or, 

+ [ (X--XH)• +2H 1 + g x  

OR 
+ g(1 + gx) [2K(x - xH) + 1] Ox. 

2K(x - xH) 
[(1 + gx)2(h 2 + iXoZ)]R = 0 (14) 

where K is an adjustable parameter. It is constant in the tortoise transformation 
(12). xH is the location of  the event horizon. 
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From equation (7), we know that 

lim {(1 + gx)2[2K(x - xH) + 1] 2 - 2 2} = 0 
x----)x H 

(15) 

So the limit of the coefficient of the term OZR/Ox 2 when t ~ to and x ~ XH is 

A = lim 
t~tO 21~r~H(X --  XH) 

X~XH(tO) 

(1 + gx)Z[2~(X -- XH) + 1] 2 -- • 

(1 + gx)[g + 2K(1 + gx)] 
(16) 

KRH 

Selecting the adjustable parameter as 

g(1 + gx) 
K - ( 1 7 )  

3on(1 - 23CH) 

and making use of equation (7), we get A = 1. On the other hand, the limit 
of the coefficient of the term OR/Ox, is 

lim 1 C 2 - ( 1  + g x )  2 +  1 
x----)xH(tO) XH X -- XH 1 + gx 

t - ) tO 

{s + gx) - x.tHg 

+ g(1 + gx)e[2K(x - XH) + 1]}) 

lim 1 ( - 2 ( 1  + gx)g + 1 { 
x-~xH(tO) XH i + gx 

t-->t 0 

+ JcHg)(1 + gXH)(1 + gx) 

2H 

--XgrH~+g(1 +gx)2[2K(X- -XH)+ 1]}) 

1 
= - -  {-2(1 + gxH)g + 2g(1 + gXH)} = 0 

~CH 
(18) 

Here we have made use of equation (7), 

2 2 = (1 + gxH) 2 

~t 2 = (1 + gXH)(gxn + gXH)[5C H (19) 

Then equation (14) is reduced to 
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02R 02R 
Ox~ + 20x,Ov~, - 0 (20) 

when x -+ XH. Its solutions are 

R 1 = e - i ~ v .  

R 2 = e -i~v*+zi~x* (X > Xt4) (21)  

where co is the energy of  a K l e i n - G o r d o n  particle. 
But what  is their physical  significance? Making use of  another  method,  

namely  the "conformal  flat method"  (Zhao, 1992), we can answer  the question 
easily. By using (12) and (13), we can rewrite the two-dimens ional  part of  
the line element  (3) as 

dS 2 = ~12 d~2 = 

- (1 + gx) 2 - [2K(x - XH) + 1] 2 dv2 

q [2K(x - -  X H ) ]  2 dx 2 + 4• -- XH) dx,  dv,  
[2K(X--  X/4) + 1] 2 [2K(X- -  XH) + 1] 2 

2K;VH(X -- XI4) ~(1 + gX)Z[2K(X -- xn)  + 112 -- 2 2 dv { 

-- 7 i] 2 t ggT. ; -- xG5 

where 

+ 2 dx,  dv,  + 2 K ( X -  Xt4) dx2~ (22) 
XH J 

~'~2 .~_ 2KfgH(X - x H )  (23) 
[2K(X -- XH) + 1] 2 

d~ 2 = (1 + gX)2[2K(X  -- XH) + 1] 2 --  •  d v  2 

2m,tn(x - XH) 

+ 2 dx,  dv,  + 2K(x - xH) dx 2 (24) 
• 

When x goes to XH, we have 

dS 2 = - d v  2 + 2 dx,  dv,  (25) 

Here,  we have used equation (16). It is easy to see that v, is a null coordinate,  
the advanced Eddington coordinate, at the future event  horizon x = xt~. 
Therefore,  the solutions RI and R2 represent,  respectively,  the ingoing wave 
and outgoing wave outside the horizon and near  it. 
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Obviously, the ingoing wave R1 is analytical at the horizon, but the 
outgoing one is not. It has a logarithmic singularity at the horizon. Following 
Damour and Ruffini (1976) we can extend the outgoing wave Rz by analytical 
continuation to the inside of the horizon through the lower half complex 
x-plane 

(x - Xn) --> ]x - xH]e -i'~ = (XH -- x ) e  - i~ (26) 

R2 : eCr~176 (x  < x n )  (27) 

The relative scattering probability of the outgoing waves produced by the 
horizon is (Sannan, 1988) 

P,o = exp(-2xroJ/K) (28) 

It is easy to prove that there exists Hawking-Unruh radiation from the event 
horizon, whose spectrum and temperature are, respectively, 

N,o = (e  ~~ 1) -1 (29) 

T = K/2"rrKB (30) 

K is given by equation (17). K8 is Boltzmann's constant. 

4. DIRAC EQUATION 

The spinor base form of the Dirac equation in curved space-times is 
(Newman and Penrose, 1962; Chandrasekhar, 1976) 

,f2 V~ P~ + i~oQ6 = 0 

VobQ a + it~0P6 = 0 (31) 

where Ix0 is the mass of the Dirac particle. W, Q~, and Yah are, respectively, 
the 2-component spinors and the covariant spinor differentiation expressed 
with spinor base components. This can be transformed into four coupled 
equations 

(D + ~ - p)F1 + (5 + xr - or)F2 = i(Ix0/,f2)Gl 

(A + Ix - y )F2 + (8 + ~ - T)FI = i(Ix0/,,/2)G2 

(D + ~ - ~)G2 - (8 + ~ - ~)G, = i ( Ixo /4~)F2 

(A + ~ - ~)G1 - (5 + ~ - ~)G2 = i ( > d , , / 2 ) F ,  (32) 

where 

Fl = pO, [:2 = p l ,  Gl = Oi, G2 = - -QO 

D = 0o0 = l~0~, A = 01i = n~O~, ~ = 0oi = m~O~, 
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= 01o = ~ 0 ~  

1 
e = ~ (Ip.;~n~l " - m ~ ; , , - ~ l  ") 

1 
a = ~ ( l~;, ,n~-~ - m ~ ; ~ N  ~) 

1 
~t = -~ ( l~.;,,n ~'n" - m~. , ,N  ~n~ ) 

1 
13 = ~ (1~; ~'n~m~' - m ~ ; ~ - ~ m  ~') 

p = l~;~m~-~ ~ 

T =  l~:~,m~n "~ (33) 

e, a ,  ~, 13, p, -rr, t J-, "r are the special designations of  the spin coefficients 
defined by Newman and Penrose (1962); l ~, n ~, m ~, and ~ are the null 
tetrad vectors; they satisfy 

l~l~ = n~n~ = m ~ m ~  = - ~ - ~  = 0 

lP'n~ = --m~-~v. = 1 

l~mw = l ~ ~  = nWmw = n ~ - ~  = 0 

g~,v = l~n~ + n~l~ -- m ~  - - ~ m ~  (34) 

In the generalized Rindler space-time (3), they are 

1 
1~ = - ~  [(1 + gx), 1, 0, 0] 

1 
n~ = - ~  [(1 + gx), - 1 ,  0, 0] 

1 
m~ = ~ [ 0 , 0 ,  1, i] 

1 
~ = ~ [0, 0, 1, - i ]  

, /2  
(35) 
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or 

1 
I ~ = 

1 
/'tP" = - ~  

1 

1 m~ ~ 

l--L- -1, o, o] 
1 + g x '  

I',l,O, 
[0, 0, - 1 ,  - i ]  

[0, 0, - 1 ,  i] 

We calculate the spin coefficients and get 

1 g 

~ = ' Y -  2 f 2 1  + g x  

oL= [3 = p = , r r  = 1 . ~ = ~ - = 0  

Then, equation (32) can be reduced to 

[1 

[i 
[i 
[i 

+ gx Ot Ox 2(1 + gx) - ~ y  + i F2 oz/ 

1 0 + 0 +  g 1:2+ 0 i FI 
+ gx Ot Ox 2(1 + gx) Oy 

1 0 0 g G2 - i Gl 
+ gx Ot Ox 2(1 + gx) Oy 

1 a + O +  g G ~ -  - + i  G2 
+ gx Ot Ox 2(1 + gx) Oy 

Separating the variables as 

Fi = R_(t, x)S_(y, z) 

F2 = R+(t, x)S+(y, z) 

G1 = R+(t, x)S_(y, z) 

G2 = R_(t, x)S+(y, z) 

and substituting them into equations (38), we have 

= i~oG1 

= i~oG 2 

(36) 

(37) 

= i~oF2 

= i~oFl (38) 

(39) 
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02R: 02R~_ xg +- g(1 + gx) OR: OR:- 
(1 + gx) 2 0 x  2 Ot 2 + 1 + gx Ot + g(1 + gx) 0----~- 

g g2 ] 
+ + 2(1 + gx) 4 (1 -1- gx)2(• 2 -Jr I.l. 2)  R:- = 0 (40) 

02S: c?2S:- 
- - + - - + k 2 S ;  = 0  (41) Oy 2 Oz 2 

Making use of the tortoise coordinates (12) and (13), we can reduce (40) to 

OZR:- OZR:_ OR:_ 
Ox 2 + 20x,Ov, ~ g Ox, = 0 (42) 

when x ---> xH. Here, equations (7) and (17) have been used. 
It is easy to get the solutions of  equations (41) and (42) outside the 

event horizon and near it. They are 

R~ = e -i'v* 

R ~ = e-i~~ +-gx* (x > xH) (43) 

Si~ = SOUt = ei(pyy+pxz) 

Extending R ~ by analytical continuation to the region x < xn, through the 
lower half complex x-plane, we have 

,t~ ~ = e~J'~eZig~/-Z'~e-io~'~* +2i'~ +-g':* (x < XH) (44) 

Because the wave functions must be bounded near the event horizon, we get 

I 
R ~ = 0 

R~_ ut = e-ieav.+2io~x,e-gx, 
(g < O, x > xH) (45) 

I 
k ~ = 0 

~_ut e~r~/Keig~r/2Ke-iO~v. +2io~X.e-gX, 
(g < 0, x < xH) (46) 

ROUt = e-i~v.+2io~:,egx, 

R~ ut = 0 

(g > O, x > XH) (47) 
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k~ (g > 0, x < xn)  (48) 

e~rtO/K e -  igw/2K e -  itov, + 2itox, egX. 

/~%u~ 0 

The relative scattering probabilities produced by the horizon are the same, 

R%~, 2 
= e -2"~'/K (g < 0) (49) 

ROUt 2 
i~ut[ = e -2=~ (g > 0) (50) 

Then we obtain the spectrum of Hawking-Unruh radiation of the Dirac 
particles from the Rindler event horizon (Sannan, 1988). It is 

No, = (e ~ + 1) -1 (51) 

where T = K/27rKB, with K given by (17). 

5. DISCUSSION 

Making use of a new method obtained by developing the Damour-  
Ruffini approach, we have introduced generalized tortoise coordinates and 
treated the Klein-Gordon equation and the Dirac equation in the generalized 
Rindler space-time. We get both the location and the Hawking-Unruh temper- 
ature of the event horizon with respect to a generalized Rindler observer 
moving with a nonuniform acceleration. We also get the radiative spectra of 
the Klein-Gordon particles and the Dirac particles to the observer. 

In fact, the most convenient approach to calculating the temperature and 
the location of the event horizon is the "conformal fiat method" (Zhao, 1992). 
Requiring that the coefficient of dr2. in equation (24) goes to 1 when x --> 
XH, we can easily get both the location and the temperature of the event 
horizon shown in (8) and (17). 

Equations (8) and (17) give us two sets of solutions about the location 
and the temperature. They are 

1 
XH = - - -  (1 -- • K = g(t)/(1 -- 2• T = KI2"rrK~ (52) 

g 

1 
XH = ---- (1 + -tH), K = --g(t) /( l  -- ZtH), T = v,/2"rrKB (53) 

g 

The first set is valid when the Rindler observer is accelerating, i.e., g(t) > 
0. The second set is valid when the observer is decelerating, i.e., g(t) < O. 
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We see that both the event horizon and the temperature depend on the variable 
acceleration g. 
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